

DEMETER – IIP DEMonstrating the Emerging Technology for measuring the Earth's Radiation

Presenter: Anum Ashraf

PI: Anum Ashraf

Team Members: Kory Priestley, Mohan Shankar, Alex

Halterman, J.R. Mahan, Talbot Jaeger

Program: Earth Radiation

Earth Radiation Budget Measurement

- ERB represents a balance between incoming solar radiation reaching the TOA with outgoing reflected solar and thermal radiant energy emitted by the Earthatmosphere system.
- Long-term, sustained, and accurate climate observations are essential as acknowledged in multiple national and international community reports and publications.
- Since 2000 CERES project has provided the continuous climate data record aboard flagship missions (Terra, Aqua, S-NPP and NOAA-20).
- Overlap in observations between ERB sensors is required to tie the measurements to a common radiometric scale and for data continuity.
- The current approach relies on flying ERB instruments as hosted payloads on large and expensive flagship missions.

Solution

- DEMETER is a "right size", free-flying sensorcraft solution and a revolutionary approach for making an enhanced Fundamental Climate Data Record (ERB-FCDR) from Low Earth Orbit as its predecessor CERES
- The sensorcraft approach integrates:
 - A non-scanning optical module
 - A two-dimensional detector array
 - Sensor payload elements with a cellular satlet craft/platform
- Reduces mass, power, and cost, by an order of magnitude over current state-of-the-art techniques.
- Eliminates the classic boundaries of a payload and spacecraft, replacing it with an integrated system that shares resources, thereby eliminating duplicity while increasing redundancy in a small package.

Solution

DEMETER Goals

- 1. Preserve Continuity
- 2. Expand Capability

Means to the Goals

- 1. Reducing the IFOV by a factor of ~10
- 2. Improving sampling of the Earth's diurnal cycle
- 3. Reducing the risk of a gap in the multi-decadal ERB-FCDR
- 4. In-situ processing capability
- 5. Enabling future technology infusion via a cellular/configurable architecture

Technical Details

- Non-scanning, wide-field-angle radiometer to measure limb-tolimb TOA radiances, while integrated with a NovaWurks Hyper Integrated Satlet (HISat) sensorcraft
- HISat features include:
 - Modular/reconfigurable architecture allows for technology infusion
 - Rightsizing to the measurement
- NovaWurks is the industry leader for conformable spacecraft architectures
- Demonstrated on-orbit pointing control and radiation hardness

Technical Details

- The two-dimensional detector array oriented perpendicular to the satellite ground track will simultaneously collects a single limb-to-limb swath of <10 km IFOV's.
- Each of the rows on the detector collect unique information, either spectral or relating to the polarization content of the incoming light.
- Successive readouts of the array represent consecutive swaths providing the necessary spatial coverage of the TOA radiation fields for nominal observations.

Next Steps

Back Up Slides

DEMETER

<u>DEM</u>onstrating the <u>E</u>merging <u>T</u>echnology for measuring the <u>E</u>arth's <u>R</u>adiation PI: Dr. Anum Ashraf, LaRC

Objective

- Develop a sensorcraft that demonstrates a gamechanging approach for measuring the Earth Radiation Budget Fundamental Climate Data Record.
- Exploit the science capability and greatly exceed data quality of current measurement by:
 - Increasing spatial resolution by factor of 10
 - Incorporating intelligent on-board data processing
- **Innovative** and **integrated** solution that reduces mass, power, risk, and cost, by an order of magnitude over current state-of-the-art techniques.
- Drastically reduced form-factor enables low cost flight opportunities providing more complete global diurnal sampling of radiation fields and significant risk reduction of a gap in the multi-decadal climate data record.

Lifespan: 0.8 yrs Payload mass: 47 kg S/C mass: 2634 kg S/C mass: 2850 kg S/C mass: 2850 kg S/C mass: 2294 kg S/C mass: 2850 kg S/C mass: 294 kg S/C mass: 30 kg S/C mass: 30 kg S/C mass: 45 kg S/C mass: 45 kg S/C mass: 45 kg

Approach

- Leverage 100+ years of direct experience to pro-actively influence the design and address trades involved in an integrated and intelligent manner
- Design and build a non-scanning wide-angle telescope that reduces IFOV and increases spatial resolution
- Build and test a technology demonstration unit consisting of the wide-angle telescope integrated with sensorcraft elements

Co-l's: Kory Priestley, Wenying Su, Seiji Kato, Dave Doelling, Paul Stackhouse, Mohan Shankar, J. Robert Mahan, Alexander Halterman **Collaborator:** Norman Loeb

Partners: Science Systems and Applications Inc., Quartus Engineering Incorporated, NovaWurks Inc., Virginia Tech.

Key Milestones

Project Kick-off	01/20
Requirements Definitions Complete	03/20
 Downselection of optical architecture 	05/20
 Preliminary Development Review 	02/21
 Long-Lead Procurement Spec Complete 	07/21
Critical Development Review	01/22
 Assembly Integration and Test Complete 	08/22
Project Close-Out Review	12/22

$$TRL_{in} = 2$$
 $TRL_{out} = 4$

